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Introduction

Practical quantum computation requires systems with long coherence times.
This has driven recent theoretical interest in the limits and causes of de-
coherence in quantum many-body systems where, typically, local quantum
information is rapidly scrambled. One tactic to store and process quantum
information is to use topological edge modes. Combining these with many-
body localization, information can be protected for infinite times, even at
effectively infinite temperature [1]. Another option is to use prethermal-
ization, some observables retain memory of the initial state for long times
before finally reaching equilibrium, leading to exponentially long coherence
times [2, 3]. Furthermore, the recent experimental search for quantum spin
liquids has led to the proposal of a “proximate spin liquid” in α-RuCl3 [4].
We meld these ideas into a sharply defined “proximate SPT regime”, where
topological effects leaks across phase boundaries, leading to anomalously
long coherence time in nearby phases [5].

Model

Consider a spin-12 chain (σ0, τ0, σ1, τ1, . . . , τ(L/2)−1) with Zσ2 × Zτ2 symmetry
generated by flipping each species. Define
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This interpolates between a paramagnet at x = 0 and an SPT (i.e. topo-
logical) at x = 1 — see Fig 2 for the phase diagram. We add generic
symmetry-preserving perturbations V̂ to break integrability. One expects
topological physics to be lost outside the SPT phase, but it extends to the
whole shaded region in dynamics. This “proximate SPT regime” is charac-
terized by anomalously long edge coherence times.
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Figure 1: Sketch of the dominant processes that tunnel between the two ferromagnetic
ground states. Domain walls (DW) are represented by blue bars, and their decorated coun-
terparts (DW*) are red and carry a Z2 charge. Under periodic boundary conditions (PBC),
the two types of domain walls are equivalent. With open boundary conditions (OBC), how-
ever, the decorated domain walls cannot be annihilated at the edges without breaking the
symmetry, so will “bounce off” instead. Decorated domain walls are therefore unable to flip
the edge spin without breaking the symmetry.

We thank Maksym Serbyn, Ehud Altman and Joel Moore for insightful discussions. We
acknowledge support from NSF Graduate Research Fellowship Program NSF DGE 1752814
(D.P.), the Emergent Phenomena in Quantum Systems initiative of the Gordon and Betty
Moore Foundation (T.S.), and University of Massachusetts start-up funds (R.V.).

Quasiparticle Dynamics

The dynamics are governed by the two types of quasiparticles present: regular
and “decorated” domain walls [6]. Regular domain walls, from HPM, separate
ferromagnetic domains for the σ’s, while decorated domain walls, from HSPT,
also carry a charge of the Zτ2 symmetry. These are condensed in the PM and
SPT phases respectively.

In the bulk, these quasiparticles are equivalent. At the boundary, how-
ever, creating a single decorated domain wall is disallowed by the Zτ2 sym-
metry. This means decorated domain walls cannot flip edge spins without
breaking the symmetry, while regular domain walls can. We therefore expect
much longer edge coherence times for x = 1 relative to x = 0 in the fer-
romagnetic phase. Our key observable is therefore the edge autocorrelation
at temperature T , CT (t) = Re 〈σz

0(t)σz
0(0)〉T . Its decay is characterized by

the coherence time, τ .
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Figure 2: Autocorrelation of the edge spin at zero temperature computed with exact diago-
nalization (ED) for 14 spins and OBC. Non-zero parameters are (J ,B) = (5.2, 1.274). Inset:
Sketch of the phase diagram for Eq. (1) as a function of x and J . Phases are described in
the text. The location of the dots corresponds to the data by color.
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Figure 3: (T = 0) Comparison of the coherence time (data) with its analytical predic-
tion (lines) Data is computed on 14 spins via ED with parameters (J ,B) = (5.2, 1.274).
(T =∞) Comparison of coherence times for OBC and PBC at infinite temperature on 14
spins. The general trends are the same as at T = 0. It was checked that the model is not
integrable due to V̂ [5].
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Figure 4: The autocorrelation CT (t) at four different temperatures as a function of time at
x = 1. Inset: Coherence time as a function of the number of spins at four temperatures.
The Hamiltonian is perturbed by V̂ to avoid integrability and fine-tuning [5].

T = 0 Coherence

At zero temperature, the coherence time τ is controlled by the Rabi oscillation
between the two ferromagnetic ground states: τ ∼ 1/∆E . We calculate this
in perturbation theory.

With PBC, the lowest order tunneling process is order L/2: two domain
walls are created, propagate around the system, and annihilate each other
(Fig. 1). This can occur for either regular or decorated domain walls, so

∆EPBC(x) ∝ ∆EDW + ∆EDW*, (2)

where ∆EDW =
(

1−x
4(J+xB)

)L/2
is the contribution for regular domain walls and

∆EDW*(x) =
(

x
4(J+(1−x)B)

)L/2
is the contribution for decorated domain walls.

(Symmetric under x ↔ 1− x .)
For OBC, decorated domain walls cannot flip an edge spin, so

∆EOBC(x) ∝ ∆ẼDW, (3)
where the tilde signifies that the regular domain wall contribution is slightly
modified compared to PBC: ∆ẼDW = 1

1−x

(
1−x

2(J+xB)

)L/2
. Fig. 3 (a) shows that

Eqs. (2) & (3) accurately predict the coherence times. We have checked that
adding perturbations does not change this pattern, though it does reduce the
divergence to a finite value. We therefore see the predicted enhancement of
coherence in the proximate SPT regime at T = 0.
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Figure 5: Autocorrelation C∞(t) at x = 1 and T =∞ under OBC and varying system size.
C∞(t) remains close to one for a time τ until it drops to its thermal value of zero, and τ
increases exponentially with system size until reaching saturation around L = 16. Inset: The
same autocorrelation C∞(t) under various conditions on 14 sites. ‘Edge’ is same as in the
main panel, ‘bulk’ corresponds to σz

L/4, ‘PBC’ corresponds to periodic boundary conditions,
and ‘No Sym’ corresponds to a system where the Z2 × Z2 symmetry was broken explicitly
with edge perturbations σx

0τ
z
1 and σy

0τ
z
1 .

0 < T ≤ ∞ Coherence

Surprisingly, the proximate SPT regime persists to all temperatures
0 ≤ T ≤ ∞ (see Figs 4, 5, 6). Naively, one expects that finite density of
both types of domain walls would cause the coherence to vanish. However,
we may rewrite the Hamiltonian as

Ĥ = −B
[
xN̂∗ + (1− x)N̂

]
+ V̂p, (4)

where N̂∗ =
∑

i σ
z
i τ

x
i σ

z
i+1, N̂ =

∑
i τ

x
i and V̂p contains O(1) terms that

are independent of B. Any process which flips the edge spin must change
the expectation of the N̂∗ operator, and such processes are exponentially
suppressed due to the so-called ADHH theorem [7]. We therefore expect a
coherence time τ ∼ eBx , as seen in Fig. 3 (b).

The proximate SPT regime is not fine-tuned in any obvious way. Fig. 6
shows its level statistics are far from integrability, and its density of states has
no quasi-periodic or oscillatory structure. As expected [2, 3], the coherence
time increases with system size before saturation at L = 16. We have
checked that the Hamiltonian is free from accidental resonances.

This enhancement of the coherence is “topological”, since only the co-
herence of the edge is exponentially enhanced and, unlike previous applica-
tions of the ADHH theorem [2, 3], it is also symmetry-protected (inset to
Fig. 3). This provides a clear example of (prethermal) SPT physics even at
infinite temperature, in a regime where the protecting symmetry is sponta-
neously broken at zero temperature.
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Figure 6: (a) Histogram of the differences in adjacent energy levels and (b) normalized
density of states in the Z2 × Z2 even/even sector on 16 spins. (c) Dependence of the
coherence time for x = 1 on B, which sets the energy scale for the τ spins. One can already
see the saturation with system size for smaller values of B. Numerical details are given in
the Suppemental Material.

Conclusions

We have demonstrated the existence of a proximate SPT regime, charac-
terized by anomalously long edge coherence times. The key to the model’s
dynamics is the behavior of its two species of quasiparticles: regular and
decorated domain walls. The decorated domain walls, which are inherited
from the SPT phase, cannot be created or annihilated near the edges of the
system without breaking the symmetry, giving rise to a dramatic increase
in edge coherence. In the special case of zero temperature, we confirmed
the quasiparticle picture within perturbation theory. We have shown that
the phenomena is robust; the enhancement of edge coherence is stable to
symmetry-preserving perturbations, integrability-breaking perturbations and,
via prethermalization, survives at all temperatures.


