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Operator Growth
I Start with a spin chain
I e.g. Chaotic Ising Model:

H =
∑

i
Xi + 1.05ZiZi+1 + 0.5Zi

I Local Operator:

e.g. O = X2

I Unitary evolution O(t) = e−iHtOeiHt .
I Probe with correlation functions:

C(t) = Tr[O(t)O(0)].

I Exact, reversible dynamics, but hard
to compute.
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Hydrodynamics

I Hydrodynamic
descriptions valid at
large time and
wavelength

I Usually (classical)
partial differential
equations

I e.g. energy diffusion,
spin diffusion,
electron
hydrodynamics

I Usually irreversible
or dissipative
dynamics.
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Hydrodynamics Example

I Say ε(t, x) is the average energy
density at a point x .

I Then energy diffusion is

d
dt ε(t, x) = D∇2ε(t, x) +∇f

for D diffusion constant, f thermal
noise

I Solved by the Green’s function

G(ω, q) = 1
iω + Dq2 q

iω

Poles
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The Graph of Operators
Let’s consider an example. Suppose O = X1,

H =
∑

i
Xi + 1.05ZiZi+1 + 0.5Zi .

We know
O(t) = e−iHtOeiHt

= O − it[H,O] + (−it)2[H, [H,O]] + · · ·

Let’s compute!

O = X1

[H,O] = 1.05iY1Z2 + 1.05iZ1Y2 + 0.5iY1

[H, [H,O]] = 2.1Z1Z2 − 2.1Y1Y2

+ 1.052Z0X1Z2 + 1.052X1 + 1.052X2 + 1.052Z1X2Z3

+ 0.525X1Z2 + 0.525Z1X2 + 0.25X1.
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O

The Basic Idea
Operators flow from simple to complex, eventually
becoming too complex to compute.

Complex operators are superpositions of a
thermodynamically large number of Pauli strings.

So when an operator becomes sufficiently complex its
dynamics should be governed by a universal statistical
description.

Our goal now is to formulate this universal
description.
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Simplifying the Graph

We have a hard problem here: quantum
mechanics on an infinite graph.

Let’s solve an easy problem instead: quantum
mechanics on a 1d chain.

To tame the huge space of operators, we
compress the information in it via the Lanczos
Algorithm.
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Krylov Vectors

I The Liouvillian is L := [H, ·].
I Take the sequence

{
O,LO,L2O, . . .

}
and apply

Gram-Schmidt to produce an orthogonal basis
{O0 = O,O1,O2, . . . }.

I The Liouvillian is tridiagonal in this basis

Lnm := Tr[O†
nLOm] =


0 b1 0 0 · · ·
b1 0 b2 0 · · ·
0 b2 0 b3 · · ·
0 0 b3 0

. . .
...

...
...

. . . . . .

 .

I The bn’s are called Lanczos coefficients and the
On’s are called Krylov vectors.

Viswanath & Müller, The Recursion Method, 2008.



Familiar Tridiagonal Matrices

Tridiagonal matrices describe (single-body) 1D quantum mechanics problems.

The Raising Operator

a† as in H = a†a + 1
2

a† =


0 0 0 0 · · ·√
1 0 0 0 · · ·

0
√

2 0 0 · · ·
0 0

√
3 0

. . .
...

...
...

. . . . . .



|0〉 |1〉 |2〉 |3〉 |5〉

Rice-Mele Model
H =

∑
n

[t + (−1)nδ] c†n+1cn + c†cn+1

+(−1)n∆c†ncn

H =


∆ t + δ 0 0 · · ·

t + δ −∆ t − δ 0 · · ·
0 t − δ ∆ t + δ · · ·
0 0 t + δ −∆

.. .
...

...
...

. . . . . .





The 1D Quantum Mechanics Problem

Define the 1D wavefunction by ϕn(t) := Tr[O(t)On].

ϕ0 ϕ1 ϕ2 ϕ3

b1 b2 b3

The operator evolves as −i d
dtO = LO, and L is tridiagonal:

i∂tϕn = −bn+1ϕn+ + bnϕn−1, ϕn(0) = δn0.

The autocorrelation function is probability of returning to
the zeroth site at time t

C(t) = Tr[O(t)O(0)] = ϕ0(t).

Viswanath & Müller, The Recursion Method, 2008.
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bn’s, n = 1, 2, . . . ,∞

1D Quantum Mechanics
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Examples
Let’s try this for a variety of
Hamiltonians.

H1 =
∑

i
XiXi+1 + 0.709Zi + 0.9045Xi

H2 = H1 +
∑

i
0.2Yi

H3 = H1 +
∑

i
0.2ZiZi+1

H(hX ) =
∑

i
XiXi+1 − 1.05Zi + hxXi

H(q)
SYK = iq/2 ∑

1≤i1<i2<···<iq≤N
Ji1...iqγi1 · · · γiq ,

J2
i1...iq = 0,

J2
i1...iq

2
= (q − 1)!

Nq−1 J2
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Hypothesis: In a chaotic1 quantum system, the Lanczos
coefficients bn are asymptotically linear, i.e. for α, γ ≥ 0,

bn
n�1−−→ αn + γ.

1i.e. not quantum-integrable
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An Exact Solution
We have a hypothesis, but what does it
mean? To find out, let’s study an exact
solution to the hypothesis
I Consider

b̃n := α
√

n(n − 1 + η) n�1−−−→ αn + γ.

I We can solve this exactly:

ϕn(t) =

√
(η)n
n! tanh(αt)n sech(αt)η

where (η)n = η(η + 1) · · · (η + n + 1).
I Expected “position” in the 1D chain is

(n(t)) = η sinh(αt)2 ∼ e2αt .
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Numerical Method

ϕ0 ϕ1 ϕ2 ϕ3

b1 b2 b3

Stitch Together

b̃5 b̃6 b̃7

Exact Coefficients

Coefficients from Exact Solution

b̃n = α
√
n(n+ 1 − η)



Algorithm

1. Compute b1, b2, . . . , bN exactly and
fit α and η to the exact solution
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2.
Stitch together the bn’s and the exact
solution to find the Greens’s function
via the continued fraction expansion
of the Green’s function. ϕ0 ϕ1 ϕ2 ϕ3

b1 b2 b3 b̃5 b̃6 b̃7

3. Identify the pole closest to the origin
to extract diffusion.
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Diffusion in the Chaotic Ising Model
I Chaotic Ising Model

H =
∑

j
Xj + 1.05ZjZj+1 + 0.5Zj

I Use initial operators at a range of
wavevectors q

Oq =
∑

j
eiqj (Xj + 1.05ZjZj+1 + 0.5Zj)

I We see the dispersion relation for the
diffusion equation.

d
dt ε(t, x) = D∇2ε(t, x) +∇f .

I Fitting shows that D = 3.35.

−0.4 −0.2 0.0 0.2 0.4
Wavevector q

0.0

0.1

0.2

0.3

P
o
le

L
o
ca

ti
o
n
iz

Numerical

Quadratic Fit



Unitary
Quantum
Dynamics

Dissipative
Hydrodynamics

O

ϕ0 ϕ1 ϕ2 ϕ3

b1 b2 b3

0 10 20 30
n

0

5

10

15

b n

(a)

H1

H2

H3

HSYK

0 10 20 30
n

4

6

8

10

12

14

b n

(b)
hX = 0.5

hX = 0.1

hX = 0.01

hX = 0

0.5 1 5 10 50 100 500
n

0.0

0.2

0.4

0.6

ϕ
n

t = 0.5

t = 1.0

t = 1.5

t = 2.0

t = 2.5

t = 3.0

−0.4 −0.2 0.0 0.2 0.4
Wavevector q

0.0

0.1

0.2

0.3

P
o
le

L
o
ca

ti
o
n
iz

Numerical

Quadratic Fit

Examine the
mathematical
structure of

operators

Compress the
information

with Lanczos

Universal
Operator
Growth

Hypothesis

Exact
Solution

Numerical
Technique



O

O0 O1 O2 O3

b1 b2 b3

Increasing Complexity
I When the hypothesis holds, then

wavefunction spreads out exponentially in
the 1D chain.

(n(t)) ∼ e2αt

I Back in the graph, this means that the
wavefunction is “escaping” towards more
and more complicated operators.

I Therefore operators inevitably “escape” to
higher complexity over time with rate 2α.

I Complex operators, far out in the graph,
serve as a thermodynamic bath for simple
operators, giving effective irreversible
dynamics and quantum chaos.
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Increasing Complexity
I When the hypothesis holds, then

wavefunction spreads out exponentially in
the 1D chain.

(n(t)) ∼ e2αt

I Back in the graph, this means that the
wavefunction is “escaping” towards more
and more complicated operators.

I Therefore operators inevitably “escape” to
higher complexity over time with rate 2α.

I Complex operators, far out in the graph,
serve as a thermodynamic bath for simple
operators, giving effective irreversible
dynamics and quantum chaos.

SYK-q 2 3 4 7 10 ∞
α/J 0 0.461 0.623 0.800 0.863 1

λL/(2J ) 0 0.454 0.620 0.799 0.863 1

Roberts, Stanford, Streicher, 2018.
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Summary

I The hypothesis governs operator growth in
chaotic, closed quantum systems

bn
n�1−−−→ αn + γ.

I Complexity growth leads to effectively
irreversible dynamics.

I This gives a new numerical technique for
computing hydrodynamics.

I The operator growth rate α controls the
growth of complexity and chaos in quantum
systems.

I arXiv:1812.08657



Extra Slide: Other Results

I Other guises of α: relation to the spectral function, analytic structure of C(t),
experimental probes.

I The exponential growth of Krylov complexity suggests that 2α can be interpretted
as a Lyapunov exponent.

I Formal of complexity: Krylov-complexity and Q-complexities
I Theorem: Krylov complexity grows faster than any other complexity, including

operator size and OTOCs.
I The theorem above implies the so-called “quantum bound on chaos” at low

temperatures.
I Most of this story carries over directly to the classical case.
I One can show the SYK model obeys the hypothesis directly, and compute most of

these quantities exactly.



Extra Slide: Operator Space
We move up a level of abstraction from the space of states to the space of operators.

I Operators O are now “kets”,
|O).

I e.g. |O) =
X1 ⊗ Y2 ⊗ Z3 + 0.3Y1 ⊗ X2.

I A basis of operators is the set
of Pauli Strings

|α) = σα1 ⊗ σα2 ⊗ · · · ⊗ σαn

for αi = 0, 1, 2, 3.
I Operator inner product:

(A|B) := Tr[A†B].

I The Liouvillian superoperator gives the
commutator of an operator against the
Hamiltonian

L = [H, ·].
I Heisenburg equation of motion

−i dO
dt = [H,O] −→ −i d |O)

dt = L |O) .

I By Baker-Campbell-Hausdorff,

O(t) = eiHtOe−iHt −→ |O(t)) = e−iLt |O) .

I Operators evolve in operator space like states
in state space.



Extra Slide: The Recursion Method
b̃1 b̃2 b̃3 b̃4 b̃5 b̃6 b̃7

G̃(z) =
∑

paths

=

+
∑

paths

G̃(1)(z)=
1

1 + b̃21G̃
(1)(z)

=
1

1 +
b̃21

1 +
b̃22

1 + b̃23G̃
(3)(z)


