A Universal Operator Growth Hypothesis

Daniel Parker
arXiv:1812.08657
23 January 2019

Acknowledgements

Collaborators

Xiangyu Cao

Thomas Scaffidi

Ehud Altman

Funding

erc

European Research Council
the European Cemmission

Advisor

Joel Moore

Operator Growth

- Start with a spin chain
- e.g. Chaotic Ising Model:

$$
H=\sum_{i} X_{i}+1.05 Z_{i} Z_{i+1}+0.5 Z_{i}
$$

- Local Operator:

$$
\text { e.g. } \mathcal{O}=X_{2}
$$

- Unitary evolution $\mathcal{O}(t)=e^{-i H t} \mathcal{O} e^{i H t}$.
- Probe with correlation functions:

$$
C(t)=\operatorname{Tr}[\mathcal{O}(t) \mathcal{O}(0)]
$$

- Exact, reversible dynamics, but hard
 to compute.

Hydrodynamics

- Hydrodynamic descriptions valid at large time and wavelength
- Usually (classical) partial differential equations
- e.g. energy diffusion, spin diffusion, electron hydrodynamics
- Usually irreversible or dissipative dynamics.

Hydrodynamics Example

- Say $\epsilon(t, x)$ is the average energy

Poles

 density at a point x.- Then energy diffusion is

$$
\frac{d}{d t} \epsilon(t, x)=D \nabla^{2} \epsilon(t, x)+\nabla f
$$

for D diffusion constant, f thermal noise

- Solved by the Green's function

$$
G(\omega, q)=\frac{1}{i \omega+D q^{2}}
$$

Universal Operator Growth
Hypothesis

Dissipative Hydrodynamics

The Graph of Operators

Let's consider an example. Suppose $\mathcal{O}=X_{1}$,

$$
H=\sum_{i} X_{i}+1.05 Z_{i} Z_{i+1}+0.5 Z_{i}
$$

We know

$$
\begin{aligned}
& \mathcal{O}(t)=e^{-i H t} \mathcal{O} e^{i H t} \\
& =\mathcal{O}-i t[H, \mathcal{O}]+(-i t)^{2}[H,[H, \mathcal{O}]]+\cdots
\end{aligned}
$$

The Graph of Operators

Let's consider an example. Suppose $\mathcal{O}=X_{1}$,

$$
H=\sum_{i} X_{i}+1.05 Z_{i} Z_{i+1}+0.5 Z_{i}
$$

We know

$$
\begin{aligned}
& \mathcal{O}(t)=e^{-i H t} \mathcal{O} e^{i H t} \\
& =\mathcal{O}-i t[H, \mathcal{O}]+(-i t)^{2}[H,[H, \mathcal{O}]]+\cdots
\end{aligned}
$$

Let's compute!

$$
\mathcal{O}=X_{1}
$$

The Graph of Operators

Let's consider an example. Suppose $\mathcal{O}=X_{1}$,

$$
H=\sum_{i} X_{i}+1.05 Z_{i} Z_{i+1}+0.5 Z_{i}
$$

We know

$$
\begin{aligned}
& \mathcal{O}(t)=e^{-i H t} \mathcal{O} e^{i H t} \\
& =\mathcal{O}-i t[H, \mathcal{O}]+(-i t)^{2}[H,[H, \mathcal{O}]]+\cdots
\end{aligned}
$$

Let's compute!

$$
\begin{aligned}
\mathcal{O} & =X_{1} \\
{[H, \mathcal{O}] } & =1.05 i Y_{1} Z_{2}+1.05 i Z_{1} Y_{2}+0.5 i Y_{1}
\end{aligned}
$$

The Graph of Operators

Let's consider an example. Suppose $\mathcal{O}=X_{1}$,

$$
H=\sum_{i} X_{i}+1.05 Z_{i} Z_{i+1}+0.5 Z_{i}
$$

We know

$$
\begin{aligned}
\mathcal{O}(t) & =e^{-i H t} \mathcal{O} e^{i H t} \\
=\mathcal{O} & -i t[H, \mathcal{O}]+(-i t)^{2}[H,[H, \mathcal{O}]]+\cdots
\end{aligned}
$$

Let's compute!

$$
\begin{aligned}
\mathcal{O} & =X_{1} \\
{[H, \mathcal{O}] } & =1.05 i Y_{1} Z_{2}+1.05 i Z_{1} Y_{2}+0.5 i Y_{1} \\
{[H,[H, \mathcal{O}]] } & =2.1 Z_{1} Z_{2}-2.1 Y_{1} Y_{2} \\
& +1.05^{2} Z_{0} X_{1} Z_{2}+1.05^{2} X_{1}+1.05^{2} X_{2}+1.05^{2} Z_{1} X_{2} Z_{3} \\
& +0.525 X_{1} Z_{2}+0.525 Z_{1} X_{2}+0.25 X_{1} .
\end{aligned}
$$

The Graph of Operators

Let's consider an example. Suppose $\mathcal{O}=X_{1}$,

$$
H=\sum_{i} X_{i}+1.05 Z_{i} Z_{i+1}+0.5 Z_{i}
$$

We know

$$
\begin{aligned}
\mathcal{O}(t) & =e^{-i H t} \mathcal{O} e^{i H t} \\
=\mathcal{O} & -i t[H, \mathcal{O}]+(-i t)^{2}[H,[H, \mathcal{O}]]+\cdots
\end{aligned}
$$

Let's compute!

$$
\begin{aligned}
\mathcal{O} & =X_{1} \\
{[H, \mathcal{O}] } & =1.05 i Y_{1} Z_{2}+1.05 i Z_{1} Y_{2}+0.5 i Y_{1} \\
{[H,[H, \mathcal{O}]] } & =2.1 Z_{1} Z_{2}-2.1 Y_{1} Y_{2} \\
& +1.05^{2} Z_{0} X_{1} Z_{2}+1.05^{2} X_{1}+1.05^{2} X_{2}+1.05^{2} Z_{1} X_{2} Z_{3} \\
& +0.525 X_{1} Z_{2}+0.525 Z_{1} X_{2}+0.25 X_{1} .
\end{aligned}
$$

The Graph of Operators

Let's consider an example. Suppose $\mathcal{O}=X_{1}$,

$$
H=\sum_{i} X_{i}+1.05 Z_{i} Z_{i+1}+0.5 Z_{i}
$$

We know

$$
\begin{aligned}
& \mathcal{O}(t)=e^{-i H t} \mathcal{O} e^{i H t} \\
& =\mathcal{O}-i t[H, \mathcal{O}]+(-i t)^{2}[H,[H, \mathcal{O}]]+\cdots
\end{aligned}
$$

Let's compute!

$$
\begin{aligned}
{[H,[H, \mathcal{O}]] } & =2.1 Z_{1} Z_{2}-2.1 Y_{1} Y_{2} \\
& +1.05^{2} Z_{0} X_{1} Z_{2}+1.05^{2} X_{1}+1.05^{2} X_{2}+1.05^{2} Z_{1} X_{2} Z_{3} \\
& +0.525 X_{1} Z_{2}+0.525 Z_{1} X_{2}+0.25 X_{1}
\end{aligned}
$$

The Basic Idea

Operators flow from simple to complex, eventually becoming too complex to compute.

Complex operators are superpositions of a thermodynamically large number of Pauli strings.

So when an operator becomes sufficiently complex its dynamics should be governed by a universal statistical description.

Our goal now is to formulate this universal description.

Simplifying the Graph

We have a hard problem here: quantum mechanics on an infinite graph.

Let's solve an easy problem instead: quantum mechanics on a 1d chain.

To tame the huge space of operators, we compress the information in it via the Lanczos Algorithm.

Krylov Vectors

- The Liouvillian is $\mathcal{L}:=[H, \cdot]$.
- Take the sequence $\left\{\mathcal{O}, \mathcal{L O}, \mathcal{L}^{2} \mathcal{O}, \ldots\right\}$ and apply Gram-Schmidt to produce an orthogonal basis $\left\{\mathcal{O}_{0}=\mathcal{O}, \mathcal{O}_{1}, \mathcal{O}_{2}, \ldots\right\}$.
- The Liouvillian is tridiagonal in this basis

$$
L_{n m}:=\operatorname{Tr}\left[\mathcal{O}_{n}^{\dagger} \mathcal{L} O_{m}\right]=\left(\begin{array}{ccccc}
0 & b_{1} & 0 & 0 & \cdots \\
b_{1} & 0 & b_{2} & 0 & \cdots \\
0 & b_{2} & 0 & b_{3} & \cdots \\
0 & 0 & b_{3} & 0 & \ddots \\
\vdots & \vdots & \vdots & \ddots & \ddots
\end{array}\right)
$$

- The b_{n} 's are called Lanczos coefficients and the \mathcal{O}_{n} 's are called Krylov vectors.

Viswanath \& Müller, The Recursion Method, 2008.

Familiar Tridiagonal Matrices

Tridiagonal matrices describe (single-body) 1D quantum mechanics problems.

The Raising Operator
a^{\dagger} as in $H=a^{\dagger} a+\frac{1}{2}$

$$
a^{\dagger}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & \cdots \\
\sqrt{1} & 0 & 0 & 0 & \cdots \\
0 & \sqrt{2} & 0 & 0 & \cdots \\
0 & 0 & \sqrt{3} & 0 & \ddots \\
\vdots & \vdots & \vdots & \ddots & \ddots
\end{array}\right)
$$

Rice-Mele Model

$$
\left.\left.\begin{array}{rl}
H & =\sum_{n}\left[t+(-1)^{n} \delta\right] c_{n+1}^{\dagger} c_{n}+c^{\dagger} c_{n+1} \\
+(-1)^{n} \Delta c_{n}^{\dagger} c_{n}
\end{array}\right] \begin{array}{ccccc}
\Delta & t+\delta & 0 & 0 & \cdots \\
t+\delta & -\Delta & t-\delta & 0 & \cdots \\
0 & t-\delta & \Delta & t+\delta & \cdots \\
0 & 0 & t+\delta & -\Delta & \ddots \\
\vdots & \vdots & \vdots & \ddots & \ddots
\end{array}\right) .
$$

The 1D Quantum Mechanics Problem

Define the 1D wavefunction by $\varphi_{n}(t):=\operatorname{Tr}\left[\mathcal{O}(t) \mathcal{O}_{n}\right]$.

The operator evolves as $-i \frac{d}{d t} \mathcal{O}=\mathcal{L O}$, and \mathcal{L} is tridiagonal:

$$
i \partial_{t} \varphi_{n}=-b_{n+1} \varphi_{n+}+b_{n} \varphi_{n-1}, \quad \varphi_{n}(0)=\delta_{n 0}
$$

The autocorrelation function is probability of returning to the zeroth site at time t

$$
C(t)=\operatorname{Tr}[\mathcal{O}(t) \mathcal{O}(0)]=\varphi_{0}(t)
$$

Viswanath \& Müller, The Recursion Method, 2008.

The 1D Quantum Mechanics Problem

Define the 1D wavefunction by $\varphi_{n}(t):=\operatorname{Tr}\left[\mathcal{O}(t) \mathcal{O}_{n}\right]$.

The operator evolves as $-i \frac{d}{d t} \mathcal{O}=\mathcal{L} \mathcal{O}$, and \mathcal{L} is tridiagonal:

$$
i \partial_{t} \varphi_{n}=-b_{n+1} \varphi_{n+}+b_{n} \varphi_{n-1}, \quad \varphi_{n}(0)=\delta_{n 0}
$$

The autocorrelation function is probability of returning to the zeroth site at time t

$$
C(t)=\operatorname{Tr}[\mathcal{O}(t) \mathcal{O}(0)]=\varphi_{0}(t)
$$

Examples

Let's try this for a variety of
Hamiltonians.

$$
H_{1}=\sum_{i} X_{i} X_{i+1}+0.709 Z_{i}+0.9045 X_{i}
$$

$$
H_{2}=H_{1}+\sum_{i} 0.2 Y_{i}
$$

$$
H_{3}=H_{1}+\sum_{i} 0.2 Z_{i} Z_{i+1}
$$

$$
H\left(h_{X}\right)=\sum_{i} X_{i} X_{i+1}-1.05 Z_{i}+h_{x} X_{i}
$$

$$
H_{\mathrm{SYK}}^{(q)}=i^{q / 2} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{q} \leq N} J_{i_{1} \ldots i_{q}} \gamma_{i_{1}} \cdots \gamma_{i_{q}},
$$

$$
\begin{aligned}
& \overline{J_{i_{1} \ldots i_{q}}^{2}}=0, \\
& \overline{J_{i_{1} \ldots i_{q}}^{2}}{ }^{2}=\frac{(q-1)!}{N^{q-1}} J^{2}
\end{aligned}
$$

Hypothesis: In a chaotic ${ }^{1}$ quantum system, the Lanczos coefficients b_{n} are asymptotically linear, i.e. for $\alpha, \gamma \geq 0$,

$$
b_{n} \xrightarrow{n \gg 1} \alpha n+\gamma .
$$

An Exact Solution

We have a hypothesis, but what does it mean? To find out, let's study an exact solution to the hypothesis

- Consider

$$
\widetilde{b}_{n}:=\alpha \sqrt{n(n-1+\eta)} \xrightarrow{n \gg 1} \alpha n+\gamma .
$$

- We can solve this exactly:

$$
\varphi_{n}(t)=\sqrt{\frac{(\eta)_{n}}{n!}} \tanh (\alpha t)^{n} \operatorname{sech}(\alpha t)^{\eta}
$$

where $(\eta)_{n}=\eta(\eta+1) \cdots(\eta+n+1)$.

- Expected "position" in the 1D chain is

$$
(n(t))=\eta \sinh (\alpha t)^{2} \sim e^{2 \alpha t}
$$

Numerical Method

Coefficients from Exact Solution

Algorithm

Compute $b_{1}, b_{2}, \ldots, b_{N}$ exactly and

1. fit α and η to the exact solution

Stitch together the b_{n} 's and the exact
2 solution to find the Greens's function via the continued fraction expansion of the Green's function.

3. Identify the pole closest to the origin

Diffusion in the Chaotic Ising Model

- Chaotic Ising Model

$$
H=\sum_{j} X_{j}+1.05 Z_{j} Z_{j+1}+0.5 Z_{j}
$$

- Use initial operators at a range of wavevectors q

$$
\mathcal{O}_{q}=\sum_{j} e^{i q j}\left(X_{j}+1.05 Z_{j} Z_{j+1}+0.5 Z_{j}\right)
$$

- We see the dispersion relation for the diffusion equation.

$$
\frac{d}{d t} \epsilon(t, x)=D \nabla^{2} \epsilon(t, x)+\nabla f .
$$

- Fitting shows that $D=3.35$.

Examine the
mathematical
structure of
operators

Unitary

Quantum
Dynamics

Increasing Complexity

- When the hypothesis holds, then wavefunction spreads out exponentially in the 1D chain.

$$
(n(t)) \sim e^{2 \alpha t}
$$

- Back in the graph, this means that the wavefunction is "escaping" towards more and more complicated operators.
- Therefore operators inevitably "escape" to higher complexity over time with rate 2α.
- Complex operators, far out in the graph, serve as a thermodynamic bath for simple operators, giving effective irreversible
 dynamics and quantum chaos.

Increasing Complexity

- When the hypothesis holds, then wavefunction spreads out exponentially in the 1D chain.

$$
(n(t)) \sim e^{2 \alpha t}
$$

- Back in the graph, this means that the wavefunction is "escaping" towards more and more complicated operators.
- Therefore operators inevitably "escape" to higher complexity over time with rate 2α.
- Complex operators, far out in the graph, serve as a thermodynamic bath for simple operators, giving effective irreversible
 dynamics and quantum chaos.

Increasing Complexity

- When the hypothesis holds, then wavefunction spreads out exponentially in the 1D chain.

$$
(n(t)) \sim e^{2 \alpha t}
$$

- Back in the graph, this means that the wavefunction is "escaping" towards more and more complicated operators.
- Therefore operators inevitably "escape" to higher complexity over time with rate 2α.
- Complex operators, far out in the graph,
 serve as a thermodynamic bath for simple operators, giving effective irreversible dynamics and quantum chaos.

SYK- q	2	3	4	7	10	∞
α / \mathcal{J}	0	0.461	0.623	0.800	0.863	1
$\lambda_{L} /(2 \mathcal{J})$	0	0.454	0.620	0.799	0.863	1

Roberts, Stanford, Streicher, 2018.

Summary

- The hypothesis governs operator growth in chaotic, closed quantum systems

$$
b_{n} \xrightarrow{n \gg 1} \alpha n+\gamma .
$$

- Complexity growth leads to effectively irreversible dynamics.
- This gives a new numerical technique for computing hydrodynamics.
- The operator growth rate α controls the growth of complexity and chaos in quantum systems.
- arXiv:1812.08657

Extra Slide: Other Results

- Other guises of α : relation to the spectral function, analytic structure of $C(t)$, experimental probes.
- The exponential growth of Krylov complexity suggests that 2α can be interpretted as a Lyapunov exponent.
- Formal of complexity: Krylov-complexity and Q-complexities
- Theorem: Krylov complexity grows faster than any other complexity, including operator size and OTOCs.
- The theorem above implies the so-called "quantum bound on chaos" at low temperatures.
- Most of this story carries over directly to the classical case.
- One can show the SYK model obeys the hypothesis directly, and compute most of these quantities exactly.

Extra Slide: Operator Space

We move up a level of abstraction from the space of states to the space of operators.

- Operators \mathcal{O} are now "kets", $\mid \mathcal{O})$.
- e.g. $\mid \mathcal{O})=$ $X_{1} \otimes Y_{2} \otimes Z_{3}+0.3 Y_{1} \otimes X_{2}$.
- A basis of operators is the set of Pauli Strings

$$
\mid \boldsymbol{\alpha})=\sigma^{\alpha_{1}} \otimes \sigma^{\alpha_{2}} \otimes \cdots \otimes \sigma^{\alpha_{n}}
$$

for $\alpha_{i}=0,1,2,3$.

- Operator inner product:

$$
(A \mid B):=\operatorname{Tr}\left[A^{\dagger} B\right] .
$$

- The Liouvillian superoperator gives the commutator of an operator against the Hamiltonian

$$
\mathcal{L}=[H, \cdot] .
$$

- Heisenburg equation of motion

$$
\left.\left.-i \frac{d \mathcal{O}}{d t}=[H, \mathcal{O}] \rightarrow-i \frac{d \mid \mathcal{O})}{d t}=\mathcal{L} \right\rvert\, \mathcal{O}\right)
$$

- By Baker-Campbell-Hausdorff,

$$
\left.\left.\mathcal{O}(t)=e^{i H t} \mathcal{O} e^{-i H t} \rightarrow \mid \mathcal{O}(t)\right)=e^{-i \mathcal{L} t} \mid \mathcal{O}\right)
$$

- Operators evolve in operator space like states in state space.

Extra Slide: The Recursion Method

$$
=\frac{1}{1+\frac{\widetilde{b}_{1}^{2}}{1+\frac{\widetilde{b}_{2}^{2}}{1+\widetilde{b}_{3}^{2} \widetilde{G}^{(3)}(z)}}}
$$

