A Universal Operator Growth Hypothesis

arXiv:1812.08657

Acknowledgements

Collaborators

Xiangyu Cao

Ehud Altman

Thomas Scaffidi

UC Berkeley

Funding

European Research Council Established by the European Commission

Advisor

Joel Moore

Quantum Mechanics

Microscopic description of the system. **Example:** Chaotic Ising Model

$$H = \sum_{i} X_i + 1.05 Z_i Z_{i+1} + 0.59 Z_i$$

Correlation functions:

 $C(t) = \langle \mathcal{O}(t,x)\mathcal{O}(0) \rangle$

Hard Solution: Hamiltonian dynamics

$$\mathcal{O}(t) = e^{-iHt}\mathcal{O}e^{iHt}.$$

Exact and reversible dynamics.

Macroscopic description of quantum systems as classical PDEs.

Example: Diffusion of energy

$$\frac{\partial}{\partial t}\varepsilon(t,x)=D\nabla^2\varepsilon(t,x)+\nabla f,$$

with *D* diffusion, *f* thermal noise.
Easy Solution: Green's function

$$G(i\omega, k) = \frac{1}{i\omega + Dq^2}$$

Approximate & irreversible dynamics.

Example: Chaotic Ising Model

$$H = \sum_{i} X_{i} + 1.05 Z_{i} Z_{i+1} + 0.5 Z_{i}.$$

Problem: Compute $C(t) = \langle \mathcal{O}(t)\mathcal{O}(0) \rangle$.

$$\mathcal{O}(t) = e^{-iHt} \mathcal{O} e^{iHt}$$

= $\mathcal{O} - it[H, \mathcal{O}] + (-it)^2[H, [H, \mathcal{O}]] + \cdots$

Example: Chaotic Ising Model

$$H = \sum_{i} X_{i} + 1.05 Z_{i} Z_{i+1} + 0.5 Z_{i}.$$

Problem: Compute $C(t) = \langle \mathcal{O}(t)\mathcal{O}(0) \rangle$.

$$\mathcal{O}(t) = e^{-iHt} \mathcal{O} e^{iHt}$$
$$= \mathcal{O} - it[H, \mathcal{O}] + (-it)^2[H, [H, \mathcal{O}]] + \cdots$$

$$\mathcal{O} = X_1$$

Example: Chaotic Ising Model

$$H = \sum_{i} X_{i} + 1.05 Z_{i} Z_{i+1} + 0.5 Z_{i}.$$

Problem: Compute $C(t) = \langle \mathcal{O}(t) \mathcal{O}(0) \rangle$.

$$\mathcal{O}(t) = e^{-iHt} \mathcal{O}e^{iHt}$$

= $\mathcal{O} - it[H, \mathcal{O}] + (-it)^2[H, [H, \mathcal{O}]] + \cdots$

$$\mathcal{O} = X_1$$

[H, \mathcal{O}] = 1.05 $iY_1Z_2 + 1.05iZ_1Y_2 + 0.5iY_1$

Example: Chaotic Ising Model

$$H = \sum_{i} X_{i} + 1.05 Z_{i} Z_{i+1} + 0.5 Z_{i}.$$

Problem: Compute $C(t) = \langle \mathcal{O}(t)\mathcal{O}(0) \rangle$.

$$\mathcal{O}(t) = e^{-iHt} \mathcal{O} e^{iHt}$$

= $\mathcal{O} - it[H, \mathcal{O}] + (-it)^2[H, [H, \mathcal{O}]] + \cdots$

$$\mathcal{O} = X_1$$

[H, O] = 1.05*i*Y₁Z₂ + 1.05*i*Z₁Y₂ + 0.5*i*Y₁
[H, [H, O]] = 2.1Z_1Z_2 - 2.1Y_1Y_2
+ 1.05²Z_0X_1Z_2 + 1.05²X_1 + 1.05²X_2 + 1.05²Z_1X_2Z_3

Example: Chaotic Ising Model

$$H = \sum_{i} X_{i} + 1.05 Z_{i} Z_{i+1} + 0.5 Z_{i}$$

Problem: Compute $C(t) = \langle \mathcal{O}(t)\mathcal{O}(0) \rangle$.

$$\mathcal{O}(t) = e^{-iHt} \mathcal{O} e^{iHt}$$

= $\mathcal{O} - it[H, \mathcal{O}] + (-it)^2[H, [H, \mathcal{O}]] + \cdots$

$$\mathcal{O} = X_1$$

[H, O] = 1.05*i*Y₁Z₂ + 1.05*i*Z₁Y₂ + 0.5*i*Y₁
[H, [H, O]] = 2.1Z_1Z_2 - 2.1Y_1Y_2
+ 1.05²Z_0X_1Z_2 + 1.05²X_1 + 1.05²X_2 + 1.05²Z_1X_2Z_3

Example: Chaotic Ising Model

$$H = \sum_{i} X_{i} + 1.05 Z_{i} Z_{i+1} + 0.5 Z_{i}$$

Problem: Compute $C(t) = \langle \mathcal{O}(t)\mathcal{O}(0) \rangle$.

$$\mathcal{O}(t) = e^{-iHt} \mathcal{O} e^{iHt}$$

= $\mathcal{O} - it[H, \mathcal{O}] + (-it)^2[H, [H, \mathcal{O}]] + \cdots$

$$\mathcal{O} = X_1$$

[H, O] = 1.05*i*Y₁Z₂ + 1.05*i*Z₁Y₂ + 0.5*i*Y₁
[H, [H, O]] = 2.1Z_1Z_2 - 2.1Y_1Y_2
+ 1.05²Z_0X_1Z_2 + 1.05²X_1 + 1.05²X_2 + 1.05²Z_1X_2Z_3

Recusion Method

Idea: There are so many operators they act as a *thermodynamic bath*. Dynamics should be *universal*.

Recusion Method

Idea: There are so many operators they act as a *thermodynamic bath*. Dynamics should be *universal*.

Recursion Method: Restate problem as 1d tight-binding model.

$$C(t) = \langle \mathcal{O}(t)\mathcal{O}(0) \rangle = \varphi_0(t)$$

$$i\partial_t \varphi_n = L_{nm} \varphi_m$$

$$L_{nm} = \begin{pmatrix} 0 & b_1 & 0 & 0 & \cdots \\ b_1 & 0 & b_2 & 0 & \cdots \\ 0 & b_2 & 0 & b_3 & \cdots \\ 0 & 0 & b_3 & 0 & \ddots \\ \vdots & \vdots & \vdots & \ddots & \ddots \end{pmatrix}$$

The b_n 's are called **Lanczos Coefficients**.

Krylov Vectors

- The Liouvillian is $\mathcal{L} := [H, \cdot]$, and $\mathcal{O}(t) = e^{i\mathcal{L}t}\mathcal{O}(0)$.
- ► Take the sequence $\{\mathcal{O}, \mathcal{LO}, \mathcal{L}^2\mathcal{O}, \dots\}$ and apply Gram-Schmidt to produce an orthogonal basis $\{\mathcal{O}_0 = \mathcal{O}, \mathcal{O}_1, \mathcal{O}_2, \dots\}.$
- The Liouvillian is tridiagonal in this basis

$$L_{nm} := \operatorname{Tr}[\mathcal{O}_{n}^{\dagger}\mathcal{L}\mathcal{O}_{m}] = \begin{pmatrix} 0 & b_{1} & 0 & 0 & \cdots \\ b_{1} & 0 & b_{2} & 0 & \cdots \\ 0 & b_{2} & 0 & b_{3} & \cdots \\ 0 & 0 & b_{3} & 0 & \ddots \\ \vdots & \vdots & \vdots & \ddots & \ddots \end{pmatrix}$$

10

- ▶ 1D Wavefunction defined by $\varphi_n(t) := \text{Tr}[\mathcal{O}_n^{\dagger}\mathcal{O}(t)].$
- ► The b_n's are called Lanczos coefficients and the O_n's are called Krylov vectors.

Viswanath & Müller, The Recursion Method, 2008.

Recusion Method

Recursion Method: Restate problem as 1d tight-binding model.

$$C(t) = \langle \mathcal{O}(t) \mathcal{O}(0) \rangle = \varphi_0(t)$$

$$i\partial_t \varphi_n = L_{nm} \varphi_m$$

$$L_{nm} = \begin{pmatrix} 0 & b_1 & 0 & 0 & \cdots \\ b_1 & 0 & b_2 & 0 & \cdots \\ 0 & b_2 & 0 & b_3 & \cdots \\ 0 & 0 & b_3 & 0 & \ddots \\ \vdots & \vdots & \vdots & \ddots & \ddots \end{pmatrix}$$

- ► Exact restatment of C(t) in terms of Lanczos coefficients {b_n}_{n=1}[∞].
- Old method, dating back to the 1980s. See:
 - D.C. Mattis. 1981
 - Viswanath & Müller, The Recursion Method, 2008.
- We can compute a few dozen b_n's through numerics.
- "Classification" of dynamics.

Asymptotic	Growth Rate	System Type		
$b_n \sim O(1)$	constant	Free models		
$b_n \sim O(\sqrt{n})$	square-root	Integrable models		
$b_n \sim ???$???	Chaotic models		
$b_n \geqq O(n)$	superlinear	Disallowed		

Chaotic Examples

$$H_{1} = \sum_{i} X_{i}X_{i+1} + 0.709Z_{i} + 0.9045X_{i}$$

$$H_{2} = H_{1} + \sum_{i} 0.2Y_{i}$$

$$H_{3} = H_{1} + \sum_{i} 0.2Z_{i}Z_{i+1}$$

$$H(h_{X}) = \sum_{i} X_{i}X_{i+1} - 1.05Z_{i} + h_{X}X_{i}$$

$$H_{SYK}^{(q)} = i^{q/2} \sum_{1 \le i_{1} < i_{2} < \cdots < i_{q} \le N} J_{i_{1} \dots i_{q}}\gamma_{i_{1}} \cdots \gamma_{i_{q}},$$

$$\overline{J_{i_{1} \dots i_{q}}^{2}} = 0,$$

$$\overline{J_{i_{1} \dots i_{q}}^{2}} = \frac{(q-1)!}{N^{q-1}}J^{2}$$

Hypothesis: In a chaotic quantum system, the Lanczos coefficients b_n are asymptotically linear, i.e. for $\alpha, \gamma \ge 0$,

$$b_n \xrightarrow{n \gg 1} \alpha n + \gamma.$$

n

Exact Asymptotic Behavior

Consider

$$\widetilde{b}_n := \alpha \sqrt{n(n-1+\eta)} \xrightarrow{n \gg 1} \alpha n + \gamma.$$

We can solve this exactly:

$$\widetilde{arphi_n}(t) = \sqrt{rac{(\eta)_n}{n!}} ext{tanh}(lpha t)^n ext{sech}(lpha t)^n$$

where $(\eta)_n = \eta(\eta+1)\cdots(\eta+n+1).$

Expected "position" in the 1D chain is

 $(n(t)) = \eta \sinh(\alpha t)^2 \sim e^{2\alpha t}.$

The wavefunction runs away "irreversibly" into the 1D chain.

Algorithm

Choose a local operator \mathcal{O} whose correlation $C(t) = \text{Tr}[\mathcal{O}(t)\mathcal{O}(0)]$ should be hydrodynamical.

Compute b_1, \ldots, b_N via infinite exact diagonalization and fit the slope α .

Stitch together the b_n 's and the asymptotic solution $\widetilde{G(N)}$.

Identify the pole closest to the origin to extract the hydrodynamical dispersion relation.

Diffusion in the Chaotic Ising Model

Chaotic Ising Model

$$H = \sum_{j} X_{j} + 1.05 Z_{j} Z_{j+1} + 0.5 Z_{j}$$

Initial operator at wavevector k:

$${\cal O}_k = \sum_j e^{ikj} \left(X_j + 1.05 Z_j Z_{j+1} + 0.5 Z_j
ight)$$

We see the dispersion relation for diffusion

$$\frac{d}{dt}\epsilon(t,x)=D\nabla^2\epsilon(t,x).$$

Summary

 The hypothesis governs operator growth in chaotic, closed quantum systems

$$b_n \xrightarrow{n \gg 1} \alpha n + \gamma.$$

- Emergence of hydrodynamics in a computationally tractable scheme.
- The operator growth rate α also controls the growth of complexity and chaos in quantum systems. [Talk in Session P24 by Xiangyu Cao]

SYK-q	2	3	4	7	10	∞
α/\mathcal{J}	0	0.461	0.623	0.800	0.863	1
$\lambda_L/(2\mathcal{J})$	0	0.454	0.620	0.799	0.863	1

arXiv:1812.08657

Extra Slide: Other Results

- Other guises of α: relation to the spectral function, analytic structure of C(t), experimental probes.
- The exponential growth of Krylov complexity suggests that 2α can be interpretted as a Lyapunov exponent.
- Formal of complexity: Krylov-complexity and Q-complexities
- Theorem: Krylov complexity grows faster than any other complexity, including operator size and OTOCs.
- The theorem above implies the so-called "quantum bound on chaos" at low temperatures.
- Most of this story carries over directly to the classical case.
- One can show the SYK model obeys the hypothesis directly, and compute most of these quantities exactly.

Extra Slide: Operator Space

We move up a level of abstraction from the space of states to the space of operators.

- Operators O are now "kets", |O).
- e.g. $|\mathcal{O}) = X_1 \otimes Y_2 \otimes Z_3 + 0.3Y_1 \otimes X_2.$
- A basis of operators is the set of Pauli Strings

$$| \boldsymbol{lpha}) = \sigma^{lpha_1} \otimes \sigma^{lpha_2} \otimes \cdots \otimes \sigma^{lpha_r}$$

for $\alpha_i = 0, 1, 2, 3$.

- Operator inner product:
 - $(A|B) := \operatorname{Tr}[A^{\dagger}B].$

 The Liouvillian superoperator gives the commutator of an operator against the Hamiltonian

$$\mathcal{L} = [H, \cdot]$$

Heisenburg equation of motion

$$-i\frac{d\mathcal{O}}{dt} = [H,\mathcal{O}] \rightarrow -i\frac{d|\mathcal{O}}{dt} = \mathcal{L}|\mathcal{O}).$$

By Baker-Campbell-Hausdorff,

$$\mathcal{O}(t) = e^{iHt}\mathcal{O}e^{-iHt}
ightarrow |\mathcal{O}(t)) = e^{-i\mathcal{L}t} |\mathcal{O}|$$
 .

 Operators evolve in operator space like states in state space.

Extra Slide: The Recursion Method

